Term Paper Assessment
Professional Software Development
UC2PSDO051

Benjamin Hagen

November 2022

Contents

[Infroduction 4
IL.I Question 1: LaTeX] 4
[2__Question 2: Requirements Engineering and System Design| 5
2.1~ Write four functional requirements for this system.| 5
[2.2 Write one non-functional requirement| 5
. i i i ML] . . 7

[2-3 Draw the composite use case diagram from the client actor with five
| interactions that can be performed, 9

3" Question 3: Software Testing Methodologies| 12
BIScenariod o oo 12
Bl _Scepario] festCase Il 12

B.12 Scenariol TestCase?2| 13

B.13 Scepario2 TestCase Il 14

BI4 Scenario?TestCase?| 15

B.1S Scenario3TestCasel| 16

B.1.6 Scepario3 festCase2l 17

B.17 Scenario4 TestCase Il 18

B.18 Scepnariod JestCase?2| 19

3.2 Provide two validation tests and two defective tests that can be per- |
formed on Air Conditioner (AC). Provide assumptions that you have |

L madeforthistest] 20
[3.3 Unit testing, component testing and system testing|. 21
BT Exampld 21

@ Question 4: Software Development Life Cycle| 22
4.1 Managing ProjectRisk| o o000 22

B2 Project Tracking] . - - o o o et e 2
4.3 Software Architecture Design|., 23
4.4 Spiral Development Life Cycle - ProjectIdea] 24
[5Question 5: Version Control| 25
5.1 Four reasons for using a version control system| 25
[5.2 Three advantages of distributed version control systems over centralized |

| VErSiON CONMOl SYSTEMS. . . .« « v o v o v e e et e e e e e 25
[5.2.T Example of a centralized control system and a distributed ver- |

| sion control system.|. o oL 25
5.3 Whatis branching? 26
[5.3.1 Three uses of branching with examples| 26

o

Question 6: Working with Git|

1 Introduction
In this term paper i will answer the following six questions.

* Question 1: LaTeX

* Question 2: Requirements Engineering and System Design
* Question 3: Software Testing Methodologies

* Question 4: Software Development Life Cycle

* Question 5: Version Control

* Question 6: Working with Git

1.1 Question 1: LaTeX

Question 1 is to write all the answers to this term paper in LaTeX. The assessment should
use the article documentClass, and should be appropriately structured. To complete this
assignment, the following LaTeX functions must be used:

* Sections

* Bold,ltalics, and Underlining.
* Figures

* References

* Table of Contents

2 Question 2: Requirements Engineering and System

Design

bookTrainTicket scenario.

2.1
1

2.2

Product Requirements

Organizational Requirements

External Requirements

Write four functional requirements for this system.

The system shall allow the client to input their name, passport number, and con-
tact information.

The system shall allow the client to select the travel dates, departure and arrival
train stations, and seating preference.

The system shall allow the client to select additional facilities such as meal, tea
or coffee, and luggage inclusion.

The system shall send a booking confirmation email to the client upon successful
payment.

Write one non-functional requirement

The train ticket booking system shall be easy to use.

The train ticket booking system shall be able to integrate with the organization’s
existing systems.

The system shall be compatible with the company’s existing booking system.

organizations

Passenger

+name
+ sureName

+ contactinformation
+ passPort number

+ newPerson
+ displayHabits

2.3 Design the client class as a parent class for both persons

Client

+ contactinformation

11
pEEEET

Ticket
Train + ticketlD
+ trainCode + status
+ trainName + payment

+ newTrain

+ trainCode

1 1 |+class

+ location

+ departureDate

+ departureStation
+ destination

+ extraFeatures

+ newHabit
+ displayHabit
+ deleteHabit

11

Payment

+ amount
+ date

+ addPayment

and

+name
newClient
]
Organization
+ name
+ contactinformation
+ newOrganization
0 1
N I ExtraFeatures
+ extralLuggage
+ drink

+meal

+ newCheckin

Figure 1: Client class as a parent class for both persons and organizations

2.4 One-to-one relationships and one-to-many relationships with
UML

1
Ticket

ticketlD

status

payment
trainCode

class

location
departureDate
departureStation
destination
extraFeatures

P E Rt

newHabit
displayHabit
deleteHabit

+ o+

+ amount
+ date

+ addPayment

Figure 2: One-to-One

One-to-One: One-to-One: This picture contains one to one relationship between
Ticket and Payment, as each ticket can have one payment associated with it, and one
payment can be associated with one ticket.

Ticket

Train +ticketiD

+ status

+ payment
+trainCode

+ newTrain LI b Idasf'

+location

+ departureDate

+ departureStation
+ destination

+ extraFeatures

+trainCode «—
+ trainName

+ newHabit
+ displayHabit
+ deleteHabit

Figure 3: One-to-many

One-to-many: Train and Ticket can have One to many relationships as Train can
have many tickets associated with it while one ticket can have only one train associated
with it.

2.5 Draw the composite use case diagram from the client actor with
five interactions that can be performed

L Book ticket

—)[Payment

Search train

lien

Add extraFeatures

Give details

))

— N\ T

Figure 4: Use case diagram

2.6 UML activity diagram for the bookTrainTicket system

=start
A

Search train

1

Check awvailabDility

Fill details

I

Submit details

1

rMake payment]

Receive confimnmation
email

|

it

0
0
0
x
i
x
[i]
i
I SRR (R N SA) _J

— N N (N [N [

an

Figure 5: bookTrainTicket system

10

2.7 Draw the sequence diagram which depicts the client logging
into the booking system portal. Write a short summary.

Redirect

Login accepted

Valicatin

Enter data Booking page

Visit booking page Hitlogin UsernamelPassword

Client

Login failed

Redirect

Figure 6: Sequence diagram

The client visits the booking page and hits the “login” button. Here, the client needs
to enter the username and password. The username and password will be validated
and if the data is correct, it will be redirected to the “Booking page”. However, if the
username and password is incorrect, the client will be redirected back to the login page.

11

3 Question 3: Software Testing Methodologies

3.1 Scenarios

Design 4 scenarios in order to perform “Scenario Testing” of the system from Question
2. For each of your test scenarios create at least two Test Cases

3.1.1 Scenario 1 Test Case 1

Objective: To test the functionality of the train ticket booking system from the perspec-
tive of the client.
Pre-requisites:

* The client has all the necessary information about the passenger.

* The client has all the necessary information about the travel.

Test data:

* Client information: name, passport number, email address, contact number.
* Passenger information: name, passport number.

* Travel information: departure date and time, departure train station, arrival train
station.

Test steps:
* The client enters the train ticket booking system.

* The client enters the necessary information about the passenger.

*

The client enters the necessary information about the travel.
* The client chooses the seating preference.

* The client chooses the additional facilities.

* The client makes the payment.

Expected results:

* The booking confirmation email is delivered to the client.

* The receipt for the booking is delivered to the client.

12

3.1.2 Scenario 1 Test Case 2

Objective: To test the functionality of the train ticket booking system from the perspec-
tive of the passenger.
Pre-requisites:

* The passenger has all the necessary information about the travel.

Test data:

* Client information: name, passport number, email address, contact number.
* Passenger information: name, passport number.

* Travel information: departure date and time, departure train station, arrival train
station.

Test steps:

* The passenger enters the train ticket booking system.

* The passenger enters the necessary information about the travel.
* The passenger chooses the seating preference.

* The passenger chooses the additional facilities.

* The passenger makes the payment.

Expected results:

* The booking confirmation email is delivered to the passenger.

13

3.1.3 Scenario 2 Test Case 1

Objective: To test the functionality of the train ticket booking system in the case of an
unsuccessful payment.
Pre-requisites:

* The client has all the necessary information about the passenger.

* The client has all the necessary information about the travel.

Test data:

* Client information: name, passport number, email address, contact number.
* Passenger information: name, passport number.

* Travel information: departure date and time, departure train station, arrival train
station.

Test steps:

* The client enters the train ticket booking system.

* The client enters the necessary information about the passenger.
* The client enters the necessary information about the travel.

* The client chooses the seating preference.

* The client chooses the additional facilities.

* The client makes the payment.

Expected results:

* The booking confirmation email is not delivered to the client.

* The receipt for the booking is not delivered to the client.

14

3.1.4 Scenario 2 Test Case 2

Objective: To test the functionality of the train ticket booking system in the case of a
successful payment.
Pre-requisites:

* The client has all the necessary information about the passenger.

* The client has all the necessary information about the travel.

Test data:

* Client information: name, passport number, email address, contact number.
* Passenger information: name, passport number.

* Travel information: departure date and time, departure train station, arrival train
station.

Test steps:

* The client enters the train ticket booking system.

* The client enters the necessary information about the passenger.
* The client enters the necessary information about the travel.

* The client chooses the seating preference.

* The client chooses the additional facilities.

* The client makes the payment.

Expected results:

* The booking confirmation email is delivered to the client.
* The receipt for the booking is delivered to the client.

* Client information: name, passport number, email address, contact number.

15

3.1.5 Scenario 3 Test Case 1

Objectives: To test whether the system is able to successfully book a train ticket when
all the required information is provided
Pre-requisites:

* The user should have all the required information, such as the name and surname
of the passenger, passport number, travel details, etc.

Test data:

* Name: John

* Surname: Smith

* Travel details: Train date and time: 01/01/2020, 10:00 AM
* Arrival train station: ABC

* Seating preference: Class: First Class

* Location: Near window

* Additional facilities: Meal included: Yes

* Additional facilities: Tea/coffee included: Yes
* Additional luggage included: Yes

Test steps:

1 The user opens the train ticket booking system and enters the required informa-
tion.

2 The user clicks on the "Book" button.
3 The system processes the booking request.
4 The user receives a booking confirmation email.

Expected results:

* The system should successfully book the train ticket and send a confirmation
email to the user.

16

3.1.6 Scenario 3 Test Case 2

Objectives: To test whether the system is able to handle incomplete information and
provide an error message to the user when a user tries to book a train ticket with incom-
plete information.

Pre-requisites:

* The user should have incomplete information, such as the name and surname of
the passenger, passport number, travel details, etc.

Test data:

* Name: John

* Surname: Smith

* Travel details: Train date and time: 01/01/2020, 10:00 AM
* Arrival train station: ABC

* Seating preference: Class: First Class

* Location: Near window

* Additional facilities: Meal included: Yes

* Additional facilities: Tea/coffee included: Yes
* Additional luggage included: Yes

Test steps:

1 The user opens the train ticket booking system and enters the required informa-
tion.

2 The user clicks on the "Book" button.
3 The system processes the booking request.
4 The user receives an error message.

Expected results:

* The system should not be able to book the train ticket and should send an error
message to the user.

17

3.1.7 Scenario 4 Test Case 1

Objectives: To test if an invalid booking will be made when an invalid credit card is
used
Pre-requisites:

* An invalid credit card is required.
* Train ticket is available.

Test data:

* Use an invalid credit card.

* Check train ticket availability.
Test steps:

1 Enter credit card information.

2 Enter passenger information.

3 Enter travel information.

4 Enter seating preference.

5 Enter additional facilities.

6 Click on “Book Train Ticket” button.

Expected results:

* Error message is displayed indicating that the credit card is invalid.

* Booking is not confirmed.

18

3.1.8 Scenario 4 Test Case 2

Objectives: To test if an invalid booking will be made when a valid credit card is used
Pre-requisites:

* A valid credit card is required.
* Train ticket is available.

Test data:

* Use a valid credit card.

* Check train ticket availability.
Test steps:

1 Enter credit card information.
2 Enter passenger information.
3 Enter travel information.

4 Enter seating preference.

5 Enter additional facilities.

6 Click on “Book Train Ticket” button.

Expected results:

* The system should successfully book the train ticket and send a confirmation
email to the user.

19

3.2 Provide two validation tests and two defective tests that can be
performed on Air Conditioner (AC). Provide assumptions that
you have made for this test.

Assumptions:
1 The AC is plugged in and has power.
2 The AC is set to the correct temperature/mode.
Validation tests:
1 Check if the AC turns on and off as expected.
2 Check if the AC blows air as expected.
Defective tests:
1 Check if the AC blows air when it is not supposed to.

2 Check if the AC does not blow air when it is supposed to.

20

3.3 Unit testing, component testing and system testing

Unit testing, component testing, and system testing are all methods of testing software
to ensure that it is functioning correctly. Unit testing focuses on individual units of code,
component testing focuses on groups of units of code, and system testing focuses on the
entire system. There are advantages and disadvantages to each level of testing. Unit test-
ing is the most granular level of testing and has the advantage of being able to pinpoint
exactly where a problem lies if a test fails. Unit tests, however, can be time-consuming
to create and maintain, and they may not always provide an accurate representation of
the behavior of the system. [SmartBear, || [geeksforgeeks, b]

Component testing is less granular than unit testing but more granular than system test-
ing. Since component tests test groups of code units rather than individual units, they
can provide a more realistic picture of how the system will perform. When the com-
ponents under test are constantly changing, component tests can be difficult to create
and maintain. System testing is the highest level of testing and has the advantage of
testing the entire system. The creation and maintenance of system tests can, however,
be time-consuming and expensive. [Black, || [Sommerville, 2016]

3.3.1 Example

As an example, if we create a browser, we will test each individual unit of the system,
such as the "bookmarks" unit, and determine if it behaves as intended. In component
testing, the complete component is tested after merging all the units of that component
to evaluate the correct functioning of that component.

Let’s assume that we integrate all the units and classes of the "save a bookmark" com-
ponent and test it. In system testing, the complete system is put under observation after
integrating all the components of the system. We will check that the Browser is working
correctly after integration and on different OS devices with different screen sizes, etc.

21

4 Question 4: Software Development Life Cycle

a). Here, I will discuss the pros and cons of using waterfall method versus using an
agile method with respect to: Managing Project Risk, Project Tracking, Software Ar-
chitecture Design

4.1 Managing Project Risk

There is no single answer to this question, as it depends on the specific project and orga-
nization. One of the advantages of using the waterfall method is that it is a well-defined
and structured approach that is easier to manage and control. The use of this method
may also facilitate the communication of progress and milestones to stakeholders. De-
spite this, some of the disadvantages of the waterfall method include its inflexibility and
inability to adapt well to changes. This can lead to an increase in risks. This approach
can also make it difficult to accurately estimate the time and resources required for a
project.[SDLC, b]|

An advantage of using agile methods is that they are more flexible and adaptable
to changes, which can reduce risks. Additionally, it can enhance communication and
transparency among team members and stakeholders. However, some disadvantages of
using the agile method include that it can be more difficult to manage and control, as it
is less structured. Furthermore, it may be difficult to estimate the amount of time and
resources required for a project with this approach.[SDLC, al

4.2 Project Tracking

The appropriateness of using either the waterfall method or the agile method depends on
the specific project being undertaken. However, there are some general considerations
that can be made. The waterfall method is more traditional and typically features more
linear and rigid project management. As a result, planning and execution can be more
straightforward, as well as tracking progress can be easier. However, it can also make it
more difficult to adapt to changes during the project, resulting in a less flexible product.

The agile method is more flexible and adaptive, features more frequent check-ins
and iterations, and generally relies heavily on team input and collaboration. This can
make it more difficult to plan and execute, as well as monitor progress. In addition, it
can also result in a more flexible final product that is better able to adapt to changes as
the project progresses.

22

4.3 Software Architecture Design

Regarding the software architecture design process, there are pros and cons to using
the waterfall method and the agile method. The waterfall method has the advantage of
being very linear and straightforward. This can make it easier to understand and follow
for those who are inexperienced with the software design process. It is also beneficial
to apply the waterfall method in order to ensure that all phases of the software design
process are completed in a timely and efficient manner. One con of using the waterfall
method is that it can be inflexible and does not allow for much change or adaptation once
the design process has begun. As a result, problems may arise if the requirements of
the project change during the design phase. Another con of using the waterfall method
is that it can be difficult to track and manage progress. This is because each phase of
the design process must be completed before the next can begin.

When it comes to software architecture design, there are a few pros and cons to us-
ing the agile method. One of the advantages of agile methods is that they can reduce the
overall risk of the project. This is because smaller and more frequent iterations allow for
more feedback and course corrections. Additionally, agile methods can improve com-
munication and collaboration among team members, since everyone is working together
on a more frequent basis. A disadvantage of using agile methods includes the fact that
it can be difficult to maintain a consistent architecture when changes are being made
constantly, and that it can be challenging to effectively communicate the architecture to
all team members when it is constantly evolving. [McCormick, || [Sommerville, 2016|]

23

4.4 Spiral Development Life Cycle - Project Idea

The spiral development life cycle is ideal for projects where there is a lot of uncertainty,
and where it is difficult to determine all requirements at the beginning. Additionally, it
is an appropriate choice when the project is complex and there is a great deal of risk
involved. Here are some examples of projects where the spiral development life cycle
would be appropriate:

- Development of a new product

- Developing a new software application

The design of a new product

This type of project is well suited to the spiral development life cycle, as it allows for
constant feedback and iteration. In this way, the project can be continuously improved
as new information is gathered. As a result, risks can also be identified and addressed
early in the project. There are a few reasons why the spiral development life cycle would
work better for this project in comparison to the validation and verification life cycle
method. In general, spiral development is better suited to projects with a high degree of
uncertainty and risk. Since this project is focused on developing a new product, there
are bound to be a number of unknowns and risks involved. Using the spiral development
life cycle, the project team will be able to manage these risks more effectively and ensure
that the project remains on schedule. The spiral development life cycle would also be
more appropriate for this project due to its flexibility. As the validation and verification
life cycle is very linear, it can be difficult to make changes along the way. With the spiral
development life cycle, the project team can make adjustments as needed, which will
ultimately lead to a better end product. [geeksforgeeks, c]

24

5 Question 5: Version Control

5.1 Four reasons for using a version control system

Four of the most important reasons to use a Version Control System (VCS) are as fol-
lows:

* VCS allows developers to collaborate on the same codebase. For larger projects
with multiple developers, this is especially important.

* VCS makes it easy to track changes to your codebase. This is important for de-
bugging and for understanding how your codebase evolves over time.

* VCS makes it easy to roll back changes. In the event that you make a mistake
or if you wish to experiment with different changes to your code, this is very
important.

* VCS allows you to create branches. This is important for developing new features
or for working on experimental changes.

[lgeeksforgeeks, d|

5.2 Three advantages of distributed version control systems over
centralized version control systems.

Distributed version control systems have the following advantages over centralized ver-
sion control systems:

1 Using a distributed version control system, every developer has a local copy of
the repository, which includes all previous versions of every file. In this way,
past versions of files can be accessed much more quickly, as well as branching
and merging can be accomplished more quickly.

2 In a distributed system, there is no single point of failure. In the event that the
central server goes down, developers will still be able to collaborate and work
using their local copies of the repository.

3 Distributed version control systems are generally more flexible than centralized
ones. Developers can, for example, work offline or use a different repository for
each project.

5.2.1 Example of a centralized control system and a distributed version control
system.

A centralized control system would be a system where there is one central server that
controls all the resources and information. Microsoft Team Foundation Server are ex-
ample of a centralized version control systems. Distributed version control systems
consist of multiple servers that control different parts of resources and information. Git
is a distributed version control system. [geeksforgeeks, al|

25

5.3 What is branching?

Branching is the process of creating a new branch, or timeline of development, from an
existing one. The branching process enables developers to create different versions of a
software application or program, each with its own code base. This can be useful when
developing new features or fixing bugs in existing code. Also, branching allows devel-
opers to experiment with different code bases without affecting the main development
branch or the main code base. Branching can be used to manage code complexity and
improve software quality. When using branching, it is important to use it wisely, as it
can also lead to code duplication and increased maintenance costs.[[Schiestl, |

5.3.1 Three uses of branching with examples

1 When a developer wants to add a new feature to a software project, they would
create a new branch of the main development branch. As a result, they can work
on their new feature without affecting the main development branch.

2 When a developer wants to fix a bug in a software project, they would create a
new branch of the main development branch. As a result, they can work on fixing
the bug without affecting the main development branch.

3 When a developer wants to experiment with a new idea for a software project,
they would create a new branch of the main development branch. This allows
them to work on their new idea without affecting the main development branch.

26

6 Question 6: Working with Git

6a) Here, the task was to "design a method in a class which generates random numbers.
The method accepts the following variables as input (int amount, int minRange, int
maxRange)".

import random

lass Class:

def random_number_generator(amount, minRange, maxRange):

isinstance(amount, int)
assert minRange < maxRange

random_numbers = []
for i in range(amount):
random_numbers . append(random. randint (minRange, maxRange))

ert len(random_numbers) == amount
min(random_numbers) >= minRange and max(random_numbers) <= maxRange

return random_numbers

x = Class.random_number_generator(10,
print (x)

[83, 77, 71, 23, 48, 92, 10, 67, 35, 4]

Figure 7: First code

27

Then it was required to host my results of Question 6a in my local repository.

~/oneDrive/skrivebord/random
$ cd random

~/0neDriv /ebord/random/random
$ git init
Reinitialized existing Git repository in C:/Users/benja/onebrive/skrivebord/rand
om/random/.git/

~/0neDrive, ivebord/random/random
$ git status
on branch main

No commits yet

untracked files:
(use "git add <file>...

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

~/0neDrive/skrivebord/random/random
$ git add .
warning: in the working copy of 'First.ipynb', LF will be replaced by CRLF the n
ext time Git touches it

I 4 ~/onebprive/skrivebord/random/random
$ git commit -m "Adding"
[main (root-commit) ab40e40] Adding
1 file changed, 71 insertions(+)
create mode 100644 First.ipynb

~/oneDrive/skrivebord/random/random
$ git status
on branch main
Your branch is based on 'origin/main’, but the upstream is gone.
(use "git branch --unset-upstream" to fixup)

nothing to commit, working tree clean

-andom/random
agen/random.git

error: remote origin already exists.

~/oneDrive/skrivebord/random/random
$ git push
Enter passphrase for key '/c/Users/benja/.ssh/id_ed25519":
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Delta compression using up to 8 threads
compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 899 bytes | 899.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:benjaahagen/random.git
* [new branch] main -> main

28

6.1 Updating

Update the project 3 times by adding appropriate commit message and with some minor
changes in the script each time.

OneDrive ord/random/random
$ git commit -m "Added precondition
[main d80b69d] Added precondition 2
1 file changed, 8 1insertions(+), 2 deletions(-)

prive/skrivebor random/random
push
r passphrase for key '/
Enumerating object {one
[counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
[compressing object (2/2), done.
writing objects: 100 3), 482 bytes | 482.00 KiB/s, done.
3 (delta 1D, e (delta 0), pack-reused 0O
Resolving deltas: 100% (1/1), completed with 1 Tocal object.
[To github.com:benjaahagen/random.git
ab40e40..d80b69d main -> main

/Users/benja/.ssh/id_ed25519

Figure 8: Added precondition 2

random

Class:

random_number_generator(amount, minRange, maxRange):

ert isinstance(amount, int)
t minRange >= @
assert minRange < maxRange

random_numbers = []
for i in range(amount):
random_numbers.append(random.randint(minRange, maxRange))

assert len(random_numbers) == amount
assert min(random_numbers) >= minRange and max(random_numbers) <= maxRange

return random_numbers

x = Class.random_number_generator(10, 1, 100)
print (x)
04s

[54, 35, 85, 68, 57, 45, 34, 7, 4, 34]

Figure 9: Second code

29

oneprive/skr andom
S git status

on branch main

Your branch is up to th 'origin/main’.

changes not staged for commit:
Cuse "
(u

"git ile to update i11 be committe
"gi s isc in working directory)

it add” and/or "git commit -a"

ord
add .
warning: in the working copy of 'First.ipynb’, LF will be
ext time Git touches it

laced by CRLF the n

oneDdrive/skrivebord/random/random
S git commit -m "Added postcondition 3"
[main_5e3529d] Added postcondition 3
1 file changed, 3 1 jons(+), 2 deletions(-)

skrivebord/randoi andom
s git push
En passphrase for key /.ssh/id_ed25519"
[Enumerating ob

0 3/3), 408 byt | 408.00 Ki , done.
(delta 1), reused 0 (delta 0), pack-reus
remote: Resolving deltas: 100% (1/1), completed
To github.com:benjaahagen/random.git
d8ol d 5e3529d main ai

do
ith 1 Tocal objec

Figure 10: Added post-condition 3

ort random

Class:

ndom_number_generator(amount, minRange, maxRange):

sert isinstance(amount, int)
ert minRange >= @
ert minRange < maxRange

random_numbers = []
for i in range(amount):
random_numbers . append(random. randint (minRange, maxRange))

amount
t min(random_numbers) >= minRange
t max(random_numbers) <= maxRange

urn random_numbers

x = Class.random_number_generator(10, 1, 100)
print (x)
(A

[6, 71, 66, 92, 19, 73, 34, 61, 9, 5]

Figure 11: Third code

30

s git statu
on branch main
vour branch is up to date with ‘origin,

tage commit:

add to_update what will be committed)
to discard changes in working directory)
no changes “git add” and/or "git commit -a

skri - randc random

s git add
rnin 11 be d by CRLF the n

in th rking copy "First.ipynb’, LF
Git touches it

~, > kriy ord/random/random
ommit -m “Changed loop structure”
F3cd] changed loop structur

ure
changed, 6 4 deletions(->

ebord/random/random

sh/id_ed25519

.00 KiB/s, done
. pack-reused 0
completed with 1 Tocal object.

random/random

Figure 12: Changed loop structure

import

s Class:

ndom_number_generator(amount, minRange, maxRange):

ssert isinstance(amount, int)
ert minRange >= @ t
ert minRange < maxRange

random_numbers = []

random_numbers . append(ran randint(minRange, maxRange))

i+=1

assert len(random_numbers) == amount
assert min(random_numbers) >= minRange
max(random_numbers) <= maxRange

urn random_numbers

x = Class.random_number_generator(10,
print (x)

0.6s

[29, 15, 60, 84, 67, 59, 64, 48, 10, 91]

Figure 13: Final code

Herelis a link to my GitHub repository.

31

https://github.com/benjaahagen/random

References

[Black,] Black, R. What is system testing? - definition from whatis.com.
https://www.techtarget.com/searchsoftwarequality/definition/
system-testing,

[geeksforgeeks, a] geeksforgeeks. Centralized vs distributed version control: Which
one should we choose? - geeksforgeeks. https://www.geeksforgeeks.org/
centralized-vs-distributed-version-control-which-one-should-we-choose/
7ref=1bp.

[geeksforgeeks, b] geeksforgeeks. Difference between component and
unit testing - geeksforgeeks. https://www.geeksforgeeks.org/
difference-between-component-and-unit-testing/|

[geeksforgeeks, c] geeksforgeeks. Difference between v-model and spi-
ral model - geeksforgeeks. https://www.geeksforgeeks.org/

difference-between-v-model-and-spiral-model/|

[geeksforgeeks, d] geeksforgeeks. Version control systems - geeksforgeeks. https:
//www.geeksforgeeks.org/version-control-systems/.

[McCormick,] McCormick, M. Waterfall vs. agile methodology. http://www.
mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf.

[Schiestl,] Schiestl, B. Code branching definition | what is a branch (ver-
sion control)? | perforce. https://www.perforce.com/blog/vcs/
branching-definition-what-branch.

[SDLC, a] SDLC. Sdlc - agile model. https://www.tutorialspoint.com/sdlc/
sdlc_agile_model.htm#.

[SDLC, b] SDLC. Sdlc - waterfall model. https://www.tutorialspoint.com/
sdlc/sdlc_waterfall model.htm.

[SmartBear,] SmartBear. What is unit testing? | smartbear. https://smartbear.
com/learn/automated-testing/what-is-unit-testing/\

[Sommerville, 2016] Sommerville, 1. (2016). Software Engineering. Pearson Educa-
tion.

32

https://www.techtarget.com/searchsoftwarequality/definition/system-testing
https://www.techtarget.com/searchsoftwarequality/definition/system-testing
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/?ref=lbp
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/?ref=lbp
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/?ref=lbp
https://www.geeksforgeeks.org/difference-between-component-and-unit-testing/
https://www.geeksforgeeks.org/difference-between-component-and-unit-testing/
https://www.geeksforgeeks.org/difference-between-v-model-and-spiral-model/
https://www.geeksforgeeks.org/difference-between-v-model-and-spiral-model/
https://www.geeksforgeeks.org/version-control-systems/
https://www.geeksforgeeks.org/version-control-systems/
http://www.mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf
http://www.mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf
https://www.perforce.com/blog/vcs/branching-definition-what-branch
https://www.perforce.com/blog/vcs/branching-definition-what-branch
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm#
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm#
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/

	Introduction
	Question 1: LaTeX

	Question 2: Requirements Engineering and System Design
	Write four functional requirements for this system.
	Write one non-functional requirement
	Design the client class as a parent class for both persons and organizations
	One-to-one relationships and one-to-many relationships with UML
	Draw the composite use case diagram from the client actor with five interactions that can be performed
	UML activity diagram for the bookTrainTicket system
	Draw the sequence diagram which depicts the client logging into the booking system portal. Write a short summary.

	Question 3: Software Testing Methodologies
	Scenarios
	Scenario 1 Test Case 1
	Scenario 1 Test Case 2
	Scenario 2 Test Case 1
	Scenario 2 Test Case 2
	Scenario 3 Test Case 1
	Scenario 3 Test Case 2
	Scenario 4 Test Case 1
	Scenario 4 Test Case 2

	Provide two validation tests and two defective tests that can be performed on Air Conditioner (AC). Provide assumptions that you have made for this test.
	Unit testing, component testing and system testing
	Example

	Question 4: Software Development Life Cycle
	Managing Project Risk
	Project Tracking
	Software Architecture Design
	Spiral Development Life Cycle - Project Idea

	Question 5: Version Control
	Four reasons for using a version control system
	Three advantages of distributed version control systems over centralized version control systems.
	Example of a centralized control system and a distributed version control system.

	What is branching?
	Three uses of branching with examples

	Question 6: Working with Git
	Updating

